Step |
Hyp |
Ref |
Expression |
1 |
|
nfnfc1 |
|- F/ x F/_ x A |
2 |
|
nfv |
|- F/ y F/_ x A |
3 |
|
nfvd |
|- ( F/_ x A -> F/ y -. x = A ) |
4 |
|
nfcvd |
|- ( F/_ x A -> F/_ x y ) |
5 |
|
id |
|- ( F/_ x A -> F/_ x A ) |
6 |
4 5
|
nfeqd |
|- ( F/_ x A -> F/ x y = A ) |
7 |
6
|
nfnd |
|- ( F/_ x A -> F/ x -. y = A ) |
8 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
9 |
8
|
notbid |
|- ( x = y -> ( -. x = A <-> -. y = A ) ) |
10 |
9
|
a1i |
|- ( F/_ x A -> ( x = y -> ( -. x = A <-> -. y = A ) ) ) |
11 |
1 2 3 7 10
|
cbv2w |
|- ( F/_ x A -> ( A. x -. x = A <-> A. y -. y = A ) ) |
12 |
|
alnex |
|- ( A. x -. x = A <-> -. E. x x = A ) |
13 |
|
alnex |
|- ( A. y -. y = A <-> -. E. y y = A ) |
14 |
11 12 13
|
3bitr3g |
|- ( F/_ x A -> ( -. E. x x = A <-> -. E. y y = A ) ) |
15 |
14
|
con4bid |
|- ( F/_ x A -> ( E. x x = A <-> E. y y = A ) ) |