Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvfo.1 | |- ( ( F ` x ) = y -> ( ph <-> ps ) ) |
|
Assertion | cbvexfo | |- ( F : A -onto-> B -> ( E. x e. A ph <-> E. y e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvfo.1 | |- ( ( F ` x ) = y -> ( ph <-> ps ) ) |
|
2 | 1 | notbid | |- ( ( F ` x ) = y -> ( -. ph <-> -. ps ) ) |
3 | 2 | cbvfo | |- ( F : A -onto-> B -> ( A. x e. A -. ph <-> A. y e. B -. ps ) ) |
4 | 3 | notbid | |- ( F : A -onto-> B -> ( -. A. x e. A -. ph <-> -. A. y e. B -. ps ) ) |
5 | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
|
6 | dfrex2 | |- ( E. y e. B ps <-> -. A. y e. B -. ps ) |
|
7 | 4 5 6 | 3bitr4g | |- ( F : A -onto-> B -> ( E. x e. A ph <-> E. y e. B ps ) ) |