Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cbvexsv | |- ( E. x ph <-> E. y [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexsv | |- ( E. x e. _V ph <-> E. y e. _V [ y / x ] ph ) |
|
2 | rexv | |- ( E. x e. _V ph <-> E. x ph ) |
|
3 | rexv | |- ( E. y e. _V [ y / x ] ph <-> E. y [ y / x ] ph ) |
|
4 | 1 2 3 | 3bitr3i | |- ( E. x ph <-> E. y [ y / x ] ph ) |