Metamath Proof Explorer


Theorem cbvexsv

Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cbvexsv
|- ( E. x ph <-> E. y [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 cbvrexsv
 |-  ( E. x e. _V ph <-> E. y e. _V [ y / x ] ph )
2 rexv
 |-  ( E. x e. _V ph <-> E. x ph )
3 rexv
 |-  ( E. y e. _V [ y / x ] ph <-> E. y [ y / x ] ph )
4 1 2 3 3bitr3i
 |-  ( E. x ph <-> E. y [ y / x ] ph )