Metamath Proof Explorer


Theorem cbvexvw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypothesis cbvalvw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvexvw
|- ( E. x ph <-> E. y ps )

Proof

Step Hyp Ref Expression
1 cbvalvw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 1 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
3 2 cbvalvw
 |-  ( A. x -. ph <-> A. y -. ps )
4 3 notbii
 |-  ( -. A. x -. ph <-> -. A. y -. ps )
5 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
6 df-ex
 |-  ( E. y ps <-> -. A. y -. ps )
7 4 5 6 3bitr4i
 |-  ( E. x ph <-> E. y ps )