Step |
Hyp |
Ref |
Expression |
1 |
|
cbvfo.1 |
|- ( ( F ` x ) = y -> ( ph <-> ps ) ) |
2 |
|
fofn |
|- ( F : A -onto-> B -> F Fn A ) |
3 |
1
|
bicomd |
|- ( ( F ` x ) = y -> ( ps <-> ph ) ) |
4 |
3
|
eqcoms |
|- ( y = ( F ` x ) -> ( ps <-> ph ) ) |
5 |
4
|
ralrn |
|- ( F Fn A -> ( A. y e. ran F ps <-> A. x e. A ph ) ) |
6 |
2 5
|
syl |
|- ( F : A -onto-> B -> ( A. y e. ran F ps <-> A. x e. A ph ) ) |
7 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
8 |
7
|
raleqdv |
|- ( F : A -onto-> B -> ( A. y e. ran F ps <-> A. y e. B ps ) ) |
9 |
6 8
|
bitr3d |
|- ( F : A -onto-> B -> ( A. x e. A ph <-> A. y e. B ps ) ) |