Metamath Proof Explorer


Theorem cbviinv

Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009) Add disjoint variable condition to avoid ax-13 . See cbviinvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis cbviunv.1
|- ( x = y -> B = C )
Assertion cbviinv
|- |^|_ x e. A B = |^|_ y e. A C

Proof

Step Hyp Ref Expression
1 cbviunv.1
 |-  ( x = y -> B = C )
2 nfcv
 |-  F/_ y B
3 nfcv
 |-  F/_ x C
4 2 3 1 cbviin
 |-  |^|_ x e. A B = |^|_ y e. A C