Metamath Proof Explorer


Theorem cbviotavw

Description: Change bound variables in a description binder. Version of cbviotav with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbviotavw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbviotavw
|- ( iota x ph ) = ( iota y ps )

Proof

Step Hyp Ref Expression
1 cbviotavw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 1 cbvabv
 |-  { x | ph } = { y | ps }
3 2 eqeq1i
 |-  ( { x | ph } = { z } <-> { y | ps } = { z } )
4 3 abbii
 |-  { z | { x | ph } = { z } } = { z | { y | ps } = { z } }
5 4 unieqi
 |-  U. { z | { x | ph } = { z } } = U. { z | { y | ps } = { z } }
6 df-iota
 |-  ( iota x ph ) = U. { z | { x | ph } = { z } }
7 df-iota
 |-  ( iota y ps ) = U. { z | { y | ps } = { z } }
8 5 6 7 3eqtr4i
 |-  ( iota x ph ) = ( iota y ps )