| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbviotaw.1 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 2 |  | cbviotaw.2 |  |-  F/ y ph | 
						
							| 3 |  | cbviotaw.3 |  |-  F/ x ps | 
						
							| 4 |  | nfv |  |-  F/ z ( ph <-> x = w ) | 
						
							| 5 |  | nfs1v |  |-  F/ x [ z / x ] ph | 
						
							| 6 |  | nfv |  |-  F/ x z = w | 
						
							| 7 | 5 6 | nfbi |  |-  F/ x ( [ z / x ] ph <-> z = w ) | 
						
							| 8 |  | sbequ12 |  |-  ( x = z -> ( ph <-> [ z / x ] ph ) ) | 
						
							| 9 |  | equequ1 |  |-  ( x = z -> ( x = w <-> z = w ) ) | 
						
							| 10 | 8 9 | bibi12d |  |-  ( x = z -> ( ( ph <-> x = w ) <-> ( [ z / x ] ph <-> z = w ) ) ) | 
						
							| 11 | 4 7 10 | cbvalv1 |  |-  ( A. x ( ph <-> x = w ) <-> A. z ( [ z / x ] ph <-> z = w ) ) | 
						
							| 12 | 2 | nfsbv |  |-  F/ y [ z / x ] ph | 
						
							| 13 |  | nfv |  |-  F/ y z = w | 
						
							| 14 | 12 13 | nfbi |  |-  F/ y ( [ z / x ] ph <-> z = w ) | 
						
							| 15 |  | nfv |  |-  F/ z ( ps <-> y = w ) | 
						
							| 16 | 3 1 | sbhypf |  |-  ( z = y -> ( [ z / x ] ph <-> ps ) ) | 
						
							| 17 |  | equequ1 |  |-  ( z = y -> ( z = w <-> y = w ) ) | 
						
							| 18 | 16 17 | bibi12d |  |-  ( z = y -> ( ( [ z / x ] ph <-> z = w ) <-> ( ps <-> y = w ) ) ) | 
						
							| 19 | 14 15 18 | cbvalv1 |  |-  ( A. z ( [ z / x ] ph <-> z = w ) <-> A. y ( ps <-> y = w ) ) | 
						
							| 20 | 11 19 | bitri |  |-  ( A. x ( ph <-> x = w ) <-> A. y ( ps <-> y = w ) ) | 
						
							| 21 | 20 | abbii |  |-  { w | A. x ( ph <-> x = w ) } = { w | A. y ( ps <-> y = w ) } | 
						
							| 22 | 21 | unieqi |  |-  U. { w | A. x ( ph <-> x = w ) } = U. { w | A. y ( ps <-> y = w ) } | 
						
							| 23 |  | dfiota2 |  |-  ( iota x ph ) = U. { w | A. x ( ph <-> x = w ) } | 
						
							| 24 |  | dfiota2 |  |-  ( iota y ps ) = U. { w | A. y ( ps <-> y = w ) } | 
						
							| 25 | 22 23 24 | 3eqtr4i |  |-  ( iota x ph ) = ( iota y ps ) |