Metamath Proof Explorer


Theorem cbviunf

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011)

Ref Expression
Hypotheses cbviunf.x
|- F/_ x A
cbviunf.y
|- F/_ y A
cbviunf.1
|- F/_ y B
cbviunf.2
|- F/_ x C
cbviunf.3
|- ( x = y -> B = C )
Assertion cbviunf
|- U_ x e. A B = U_ y e. A C

Proof

Step Hyp Ref Expression
1 cbviunf.x
 |-  F/_ x A
2 cbviunf.y
 |-  F/_ y A
3 cbviunf.1
 |-  F/_ y B
4 cbviunf.2
 |-  F/_ x C
5 cbviunf.3
 |-  ( x = y -> B = C )
6 3 nfcri
 |-  F/ y z e. B
7 4 nfcri
 |-  F/ x z e. C
8 5 eleq2d
 |-  ( x = y -> ( z e. B <-> z e. C ) )
9 1 2 6 7 8 cbvrexfw
 |-  ( E. x e. A z e. B <-> E. y e. A z e. C )
10 9 abbii
 |-  { z | E. x e. A z e. B } = { z | E. y e. A z e. C }
11 df-iun
 |-  U_ x e. A B = { z | E. x e. A z e. B }
12 df-iun
 |-  U_ y e. A C = { z | E. y e. A z e. C }
13 10 11 12 3eqtr4i
 |-  U_ x e. A B = U_ y e. A C