Metamath Proof Explorer


Theorem cbviunv

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003) Add disjoint variable condition to avoid ax-13 . See cbviunvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis cbviunv.1
|- ( x = y -> B = C )
Assertion cbviunv
|- U_ x e. A B = U_ y e. A C

Proof

Step Hyp Ref Expression
1 cbviunv.1
 |-  ( x = y -> B = C )
2 nfcv
 |-  F/_ y B
3 nfcv
 |-  F/_ x C
4 2 3 1 cbviun
 |-  U_ x e. A B = U_ y e. A C