Metamath Proof Explorer


Theorem cbviunv

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003) Add disjoint variable condition to avoid ax-13 . See cbviunvg for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviunv.1
|- ( x = y -> B = C )
Assertion cbviunv
|- U_ x e. A B = U_ y e. A C

Proof

Step Hyp Ref Expression
1 cbviunv.1
 |-  ( x = y -> B = C )
2 1 eleq2d
 |-  ( x = y -> ( z e. B <-> z e. C ) )
3 2 cbvrexvw
 |-  ( E. x e. A z e. B <-> E. y e. A z e. C )
4 3 abbii
 |-  { z | E. x e. A z e. B } = { z | E. y e. A z e. C }
5 df-iun
 |-  U_ x e. A B = { z | E. x e. A z e. B }
6 df-iun
 |-  U_ y e. A C = { z | E. y e. A z e. C }
7 4 5 6 3eqtr4i
 |-  U_ x e. A B = U_ y e. A C