Step |
Hyp |
Ref |
Expression |
1 |
|
cbvixp.1 |
|- F/_ y B |
2 |
|
cbvixp.2 |
|- F/_ x C |
3 |
|
cbvixp.3 |
|- ( x = y -> B = C ) |
4 |
1
|
nfel2 |
|- F/ y ( f ` x ) e. B |
5 |
2
|
nfel2 |
|- F/ x ( f ` y ) e. C |
6 |
|
fveq2 |
|- ( x = y -> ( f ` x ) = ( f ` y ) ) |
7 |
6 3
|
eleq12d |
|- ( x = y -> ( ( f ` x ) e. B <-> ( f ` y ) e. C ) ) |
8 |
4 5 7
|
cbvralw |
|- ( A. x e. A ( f ` x ) e. B <-> A. y e. A ( f ` y ) e. C ) |
9 |
8
|
anbi2i |
|- ( ( f Fn A /\ A. x e. A ( f ` x ) e. B ) <-> ( f Fn A /\ A. y e. A ( f ` y ) e. C ) ) |
10 |
9
|
abbii |
|- { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } = { f | ( f Fn A /\ A. y e. A ( f ` y ) e. C ) } |
11 |
|
dfixp |
|- X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } |
12 |
|
dfixp |
|- X_ y e. A C = { f | ( f Fn A /\ A. y e. A ( f ` y ) e. C ) } |
13 |
10 11 12
|
3eqtr4i |
|- X_ x e. A B = X_ y e. A C |