Metamath Proof Explorer


Theorem cbvixpv

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis cbvixpv.1
|- ( x = y -> B = C )
Assertion cbvixpv
|- X_ x e. A B = X_ y e. A C

Proof

Step Hyp Ref Expression
1 cbvixpv.1
 |-  ( x = y -> B = C )
2 nfcv
 |-  F/_ y B
3 nfcv
 |-  F/_ x C
4 2 3 1 cbvixp
 |-  X_ x e. A B = X_ y e. A C