Metamath Proof Explorer


Theorem cbvmovw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvmo and cbvmow for versions with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Mar-1995) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvmovw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvmovw
|- ( E* x ph <-> E* y ps )

Proof

Step Hyp Ref Expression
1 cbvmovw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 equequ1
 |-  ( x = y -> ( x = z <-> y = z ) )
3 1 2 imbi12d
 |-  ( x = y -> ( ( ph -> x = z ) <-> ( ps -> y = z ) ) )
4 3 cbvalvw
 |-  ( A. x ( ph -> x = z ) <-> A. y ( ps -> y = z ) )
5 4 exbii
 |-  ( E. z A. x ( ph -> x = z ) <-> E. z A. y ( ps -> y = z ) )
6 df-mo
 |-  ( E* x ph <-> E. z A. x ( ph -> x = z ) )
7 df-mo
 |-  ( E* y ps <-> E. z A. y ( ps -> y = z ) )
8 5 6 7 3bitr4i
 |-  ( E* x ph <-> E* y ps )