| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvmow.1 |  |-  F/ y ph | 
						
							| 2 |  | cbvmow.2 |  |-  F/ x ps | 
						
							| 3 |  | cbvmow.3 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 4 |  | nfv |  |-  F/ y x = z | 
						
							| 5 | 1 4 | nfim |  |-  F/ y ( ph -> x = z ) | 
						
							| 6 |  | nfv |  |-  F/ x y = z | 
						
							| 7 | 2 6 | nfim |  |-  F/ x ( ps -> y = z ) | 
						
							| 8 |  | equequ1 |  |-  ( x = y -> ( x = z <-> y = z ) ) | 
						
							| 9 | 3 8 | imbi12d |  |-  ( x = y -> ( ( ph -> x = z ) <-> ( ps -> y = z ) ) ) | 
						
							| 10 | 5 7 9 | cbvalv1 |  |-  ( A. x ( ph -> x = z ) <-> A. y ( ps -> y = z ) ) | 
						
							| 11 | 10 | exbii |  |-  ( E. z A. x ( ph -> x = z ) <-> E. z A. y ( ps -> y = z ) ) | 
						
							| 12 |  | df-mo |  |-  ( E* x ph <-> E. z A. x ( ph -> x = z ) ) | 
						
							| 13 |  | df-mo |  |-  ( E* y ps <-> E. z A. y ( ps -> y = z ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i |  |-  ( E* x ph <-> E* y ps ) |