Metamath Proof Explorer


Theorem cbvmpo

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013)

Ref Expression
Hypotheses cbvmpo.1
|- F/_ z C
cbvmpo.2
|- F/_ w C
cbvmpo.3
|- F/_ x D
cbvmpo.4
|- F/_ y D
cbvmpo.5
|- ( ( x = z /\ y = w ) -> C = D )
Assertion cbvmpo
|- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D )

Proof

Step Hyp Ref Expression
1 cbvmpo.1
 |-  F/_ z C
2 cbvmpo.2
 |-  F/_ w C
3 cbvmpo.3
 |-  F/_ x D
4 cbvmpo.4
 |-  F/_ y D
5 cbvmpo.5
 |-  ( ( x = z /\ y = w ) -> C = D )
6 nfcv
 |-  F/_ z B
7 nfcv
 |-  F/_ x B
8 eqidd
 |-  ( x = z -> B = B )
9 6 7 1 2 3 4 8 5 cbvmpox
 |-  ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D )