Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmpo.1 | |- F/_ z C |
|
| cbvmpo.2 | |- F/_ w C |
||
| cbvmpo.3 | |- F/_ x D |
||
| cbvmpo.4 | |- F/_ y D |
||
| cbvmpo.5 | |- ( ( x = z /\ y = w ) -> C = D ) |
||
| Assertion | cbvmpo | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpo.1 | |- F/_ z C |
|
| 2 | cbvmpo.2 | |- F/_ w C |
|
| 3 | cbvmpo.3 | |- F/_ x D |
|
| 4 | cbvmpo.4 | |- F/_ y D |
|
| 5 | cbvmpo.5 | |- ( ( x = z /\ y = w ) -> C = D ) |
|
| 6 | nfcv | |- F/_ z B |
|
| 7 | nfcv | |- F/_ x B |
|
| 8 | eqidd | |- ( x = z -> B = B ) |
|
| 9 | 6 7 1 2 3 4 8 5 | cbvmpox | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |