Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpov.1 |
|- ( x = z -> C = E ) |
2 |
|
cbvmpov.2 |
|- ( y = w -> E = D ) |
3 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
4 |
|
eleq1w |
|- ( y = w -> ( y e. B <-> w e. B ) ) |
5 |
3 4
|
bi2anan9 |
|- ( ( x = z /\ y = w ) -> ( ( x e. A /\ y e. B ) <-> ( z e. A /\ w e. B ) ) ) |
6 |
1 2
|
sylan9eq |
|- ( ( x = z /\ y = w ) -> C = D ) |
7 |
6
|
eqeq2d |
|- ( ( x = z /\ y = w ) -> ( v = C <-> v = D ) ) |
8 |
5 7
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( ( x e. A /\ y e. B ) /\ v = C ) <-> ( ( z e. A /\ w e. B ) /\ v = D ) ) ) |
9 |
8
|
cbvoprab12v |
|- { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. B ) /\ v = D ) } |
10 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } |
11 |
|
df-mpo |
|- ( z e. A , w e. B |-> D ) = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. B ) /\ v = D ) } |
12 |
9 10 11
|
3eqtr4i |
|- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |