Metamath Proof Explorer


Theorem cbvmpov

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt , some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses cbvmpov.1
|- ( x = z -> C = E )
cbvmpov.2
|- ( y = w -> E = D )
Assertion cbvmpov
|- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D )

Proof

Step Hyp Ref Expression
1 cbvmpov.1
 |-  ( x = z -> C = E )
2 cbvmpov.2
 |-  ( y = w -> E = D )
3 nfcv
 |-  F/_ z C
4 nfcv
 |-  F/_ w C
5 nfcv
 |-  F/_ x D
6 nfcv
 |-  F/_ y D
7 1 2 sylan9eq
 |-  ( ( x = z /\ y = w ) -> C = D )
8 3 4 5 6 7 cbvmpo
 |-  ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D )