Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt , some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvmpov.1 | |- ( x = z -> C = E ) |
|
cbvmpov.2 | |- ( y = w -> E = D ) |
||
Assertion | cbvmpov | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmpov.1 | |- ( x = z -> C = E ) |
|
2 | cbvmpov.2 | |- ( y = w -> E = D ) |
|
3 | nfcv | |- F/_ z C |
|
4 | nfcv | |- F/_ w C |
|
5 | nfcv | |- F/_ x D |
|
6 | nfcv | |- F/_ y D |
|
7 | 1 2 | sylan9eq | |- ( ( x = z /\ y = w ) -> C = D ) |
8 | 3 4 5 6 7 | cbvmpo | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |