Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpox.1 |
|- F/_ z B |
2 |
|
cbvmpox.2 |
|- F/_ x D |
3 |
|
cbvmpox.3 |
|- F/_ z C |
4 |
|
cbvmpox.4 |
|- F/_ w C |
5 |
|
cbvmpox.5 |
|- F/_ x E |
6 |
|
cbvmpox.6 |
|- F/_ y E |
7 |
|
cbvmpox.7 |
|- ( x = z -> B = D ) |
8 |
|
cbvmpox.8 |
|- ( ( x = z /\ y = w ) -> C = E ) |
9 |
|
nfv |
|- F/ z x e. A |
10 |
1
|
nfcri |
|- F/ z y e. B |
11 |
9 10
|
nfan |
|- F/ z ( x e. A /\ y e. B ) |
12 |
3
|
nfeq2 |
|- F/ z u = C |
13 |
11 12
|
nfan |
|- F/ z ( ( x e. A /\ y e. B ) /\ u = C ) |
14 |
|
nfv |
|- F/ w x e. A |
15 |
|
nfcv |
|- F/_ w B |
16 |
15
|
nfcri |
|- F/ w y e. B |
17 |
14 16
|
nfan |
|- F/ w ( x e. A /\ y e. B ) |
18 |
4
|
nfeq2 |
|- F/ w u = C |
19 |
17 18
|
nfan |
|- F/ w ( ( x e. A /\ y e. B ) /\ u = C ) |
20 |
|
nfv |
|- F/ x z e. A |
21 |
2
|
nfcri |
|- F/ x w e. D |
22 |
20 21
|
nfan |
|- F/ x ( z e. A /\ w e. D ) |
23 |
5
|
nfeq2 |
|- F/ x u = E |
24 |
22 23
|
nfan |
|- F/ x ( ( z e. A /\ w e. D ) /\ u = E ) |
25 |
|
nfv |
|- F/ y ( z e. A /\ w e. D ) |
26 |
6
|
nfeq2 |
|- F/ y u = E |
27 |
25 26
|
nfan |
|- F/ y ( ( z e. A /\ w e. D ) /\ u = E ) |
28 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
29 |
28
|
adantr |
|- ( ( x = z /\ y = w ) -> ( x e. A <-> z e. A ) ) |
30 |
7
|
eleq2d |
|- ( x = z -> ( y e. B <-> y e. D ) ) |
31 |
|
eleq1w |
|- ( y = w -> ( y e. D <-> w e. D ) ) |
32 |
30 31
|
sylan9bb |
|- ( ( x = z /\ y = w ) -> ( y e. B <-> w e. D ) ) |
33 |
29 32
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( x e. A /\ y e. B ) <-> ( z e. A /\ w e. D ) ) ) |
34 |
8
|
eqeq2d |
|- ( ( x = z /\ y = w ) -> ( u = C <-> u = E ) ) |
35 |
33 34
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( ( x e. A /\ y e. B ) /\ u = C ) <-> ( ( z e. A /\ w e. D ) /\ u = E ) ) ) |
36 |
13 19 24 27 35
|
cbvoprab12 |
|- { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } = { <. <. z , w >. , u >. | ( ( z e. A /\ w e. D ) /\ u = E ) } |
37 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } |
38 |
|
df-mpo |
|- ( z e. A , w e. D |-> E ) = { <. <. z , w >. , u >. | ( ( z e. A /\ w e. D ) /\ u = E ) } |
39 |
36 37 38
|
3eqtr4i |
|- ( x e. A , y e. B |-> C ) = ( z e. A , w e. D |-> E ) |