Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmptf.1 |
|- F/_ x A |
2 |
|
cbvmptf.2 |
|- F/_ y A |
3 |
|
cbvmptf.3 |
|- F/_ y B |
4 |
|
cbvmptf.4 |
|- F/_ x C |
5 |
|
cbvmptf.5 |
|- ( x = y -> B = C ) |
6 |
|
nfv |
|- F/ w ( x e. A /\ z = B ) |
7 |
1
|
nfcri |
|- F/ x w e. A |
8 |
|
nfs1v |
|- F/ x [ w / x ] z = B |
9 |
7 8
|
nfan |
|- F/ x ( w e. A /\ [ w / x ] z = B ) |
10 |
|
eleq1w |
|- ( x = w -> ( x e. A <-> w e. A ) ) |
11 |
|
sbequ12 |
|- ( x = w -> ( z = B <-> [ w / x ] z = B ) ) |
12 |
10 11
|
anbi12d |
|- ( x = w -> ( ( x e. A /\ z = B ) <-> ( w e. A /\ [ w / x ] z = B ) ) ) |
13 |
6 9 12
|
cbvopab1 |
|- { <. x , z >. | ( x e. A /\ z = B ) } = { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } |
14 |
2
|
nfcri |
|- F/ y w e. A |
15 |
3
|
nfeq2 |
|- F/ y z = B |
16 |
15
|
nfsbv |
|- F/ y [ w / x ] z = B |
17 |
14 16
|
nfan |
|- F/ y ( w e. A /\ [ w / x ] z = B ) |
18 |
|
nfv |
|- F/ w ( y e. A /\ z = C ) |
19 |
|
eleq1w |
|- ( w = y -> ( w e. A <-> y e. A ) ) |
20 |
|
sbequ |
|- ( w = y -> ( [ w / x ] z = B <-> [ y / x ] z = B ) ) |
21 |
4
|
nfeq2 |
|- F/ x z = C |
22 |
5
|
eqeq2d |
|- ( x = y -> ( z = B <-> z = C ) ) |
23 |
21 22
|
sbiev |
|- ( [ y / x ] z = B <-> z = C ) |
24 |
20 23
|
bitrdi |
|- ( w = y -> ( [ w / x ] z = B <-> z = C ) ) |
25 |
19 24
|
anbi12d |
|- ( w = y -> ( ( w e. A /\ [ w / x ] z = B ) <-> ( y e. A /\ z = C ) ) ) |
26 |
17 18 25
|
cbvopab1 |
|- { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } |
27 |
13 26
|
eqtri |
|- { <. x , z >. | ( x e. A /\ z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } |
28 |
|
df-mpt |
|- ( x e. A |-> B ) = { <. x , z >. | ( x e. A /\ z = B ) } |
29 |
|
df-mpt |
|- ( y e. A |-> C ) = { <. y , z >. | ( y e. A /\ z = C ) } |
30 |
27 28 29
|
3eqtr4i |
|- ( x e. A |-> B ) = ( y e. A |-> C ) |