| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmptfg.1 |
|- F/_ x A |
| 2 |
|
cbvmptfg.2 |
|- F/_ y A |
| 3 |
|
cbvmptfg.3 |
|- F/_ y B |
| 4 |
|
cbvmptfg.4 |
|- F/_ x C |
| 5 |
|
cbvmptfg.5 |
|- ( x = y -> B = C ) |
| 6 |
|
nfv |
|- F/ w ( x e. A /\ z = B ) |
| 7 |
1
|
nfcri |
|- F/ x w e. A |
| 8 |
|
nfs1v |
|- F/ x [ w / x ] z = B |
| 9 |
7 8
|
nfan |
|- F/ x ( w e. A /\ [ w / x ] z = B ) |
| 10 |
|
eleq1w |
|- ( x = w -> ( x e. A <-> w e. A ) ) |
| 11 |
|
sbequ12 |
|- ( x = w -> ( z = B <-> [ w / x ] z = B ) ) |
| 12 |
10 11
|
anbi12d |
|- ( x = w -> ( ( x e. A /\ z = B ) <-> ( w e. A /\ [ w / x ] z = B ) ) ) |
| 13 |
6 9 12
|
cbvopab1g |
|- { <. x , z >. | ( x e. A /\ z = B ) } = { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } |
| 14 |
2
|
nfcri |
|- F/ y w e. A |
| 15 |
3
|
nfeq2 |
|- F/ y z = B |
| 16 |
15
|
nfsb |
|- F/ y [ w / x ] z = B |
| 17 |
14 16
|
nfan |
|- F/ y ( w e. A /\ [ w / x ] z = B ) |
| 18 |
|
nfv |
|- F/ w ( y e. A /\ z = C ) |
| 19 |
|
eleq1w |
|- ( w = y -> ( w e. A <-> y e. A ) ) |
| 20 |
|
sbequ |
|- ( w = y -> ( [ w / x ] z = B <-> [ y / x ] z = B ) ) |
| 21 |
4
|
nfeq2 |
|- F/ x z = C |
| 22 |
5
|
eqeq2d |
|- ( x = y -> ( z = B <-> z = C ) ) |
| 23 |
21 22
|
sbie |
|- ( [ y / x ] z = B <-> z = C ) |
| 24 |
20 23
|
bitrdi |
|- ( w = y -> ( [ w / x ] z = B <-> z = C ) ) |
| 25 |
19 24
|
anbi12d |
|- ( w = y -> ( ( w e. A /\ [ w / x ] z = B ) <-> ( y e. A /\ z = C ) ) ) |
| 26 |
17 18 25
|
cbvopab1g |
|- { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } |
| 27 |
13 26
|
eqtri |
|- { <. x , z >. | ( x e. A /\ z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } |
| 28 |
|
df-mpt |
|- ( x e. A |-> B ) = { <. x , z >. | ( x e. A /\ z = B ) } |
| 29 |
|
df-mpt |
|- ( y e. A |-> C ) = { <. y , z >. | ( y e. A /\ z = C ) } |
| 30 |
27 28 29
|
3eqtr4i |
|- ( x e. A |-> B ) = ( y e. A |-> C ) |