| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvopab.1 |
|- F/ z ph |
| 2 |
|
cbvopab.2 |
|- F/ w ph |
| 3 |
|
cbvopab.3 |
|- F/ x ps |
| 4 |
|
cbvopab.4 |
|- F/ y ps |
| 5 |
|
cbvopab.5 |
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
| 6 |
|
nfv |
|- F/ z v = <. x , y >. |
| 7 |
6 1
|
nfan |
|- F/ z ( v = <. x , y >. /\ ph ) |
| 8 |
|
nfv |
|- F/ w v = <. x , y >. |
| 9 |
8 2
|
nfan |
|- F/ w ( v = <. x , y >. /\ ph ) |
| 10 |
|
nfv |
|- F/ x v = <. z , w >. |
| 11 |
10 3
|
nfan |
|- F/ x ( v = <. z , w >. /\ ps ) |
| 12 |
|
nfv |
|- F/ y v = <. z , w >. |
| 13 |
12 4
|
nfan |
|- F/ y ( v = <. z , w >. /\ ps ) |
| 14 |
|
opeq12 |
|- ( ( x = z /\ y = w ) -> <. x , y >. = <. z , w >. ) |
| 15 |
14
|
eqeq2d |
|- ( ( x = z /\ y = w ) -> ( v = <. x , y >. <-> v = <. z , w >. ) ) |
| 16 |
15 5
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. z , w >. /\ ps ) ) ) |
| 17 |
7 9 11 13 16
|
cbvex2v |
|- ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. z E. w ( v = <. z , w >. /\ ps ) ) |
| 18 |
17
|
abbii |
|- { v | E. x E. y ( v = <. x , y >. /\ ph ) } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
| 19 |
|
df-opab |
|- { <. x , y >. | ph } = { v | E. x E. y ( v = <. x , y >. /\ ph ) } |
| 20 |
|
df-opab |
|- { <. z , w >. | ps } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
| 21 |
18 19 20
|
3eqtr4i |
|- { <. x , y >. | ph } = { <. z , w >. | ps } |