| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ z E. y ( w = <. x , y >. /\ ph ) | 
						
							| 2 |  | nfv |  |-  F/ x w = <. z , y >. | 
						
							| 3 |  | nfs1v |  |-  F/ x [ z / x ] ph | 
						
							| 4 | 2 3 | nfan |  |-  F/ x ( w = <. z , y >. /\ [ z / x ] ph ) | 
						
							| 5 | 4 | nfex |  |-  F/ x E. y ( w = <. z , y >. /\ [ z / x ] ph ) | 
						
							| 6 |  | opeq1 |  |-  ( x = z -> <. x , y >. = <. z , y >. ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( x = z -> ( w = <. x , y >. <-> w = <. z , y >. ) ) | 
						
							| 8 |  | sbequ12 |  |-  ( x = z -> ( ph <-> [ z / x ] ph ) ) | 
						
							| 9 | 7 8 | anbi12d |  |-  ( x = z -> ( ( w = <. x , y >. /\ ph ) <-> ( w = <. z , y >. /\ [ z / x ] ph ) ) ) | 
						
							| 10 | 9 | exbidv |  |-  ( x = z -> ( E. y ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. z , y >. /\ [ z / x ] ph ) ) ) | 
						
							| 11 | 1 5 10 | cbvexv1 |  |-  ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ [ z / x ] ph ) ) | 
						
							| 12 | 11 | abbii |  |-  { w | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ [ z / x ] ph ) } | 
						
							| 13 |  | df-opab |  |-  { <. x , y >. | ph } = { w | E. x E. y ( w = <. x , y >. /\ ph ) } | 
						
							| 14 |  | df-opab |  |-  { <. z , y >. | [ z / x ] ph } = { w | E. z E. y ( w = <. z , y >. /\ [ z / x ] ph ) } | 
						
							| 15 | 12 13 14 | 3eqtr4i |  |-  { <. x , y >. | ph } = { <. z , y >. | [ z / x ] ph } |