Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|- F/ z E. y ( w = <. x , y >. /\ ph ) |
2 |
|
nfv |
|- F/ x w = <. z , y >. |
3 |
|
nfs1v |
|- F/ x [ z / x ] ph |
4 |
2 3
|
nfan |
|- F/ x ( w = <. z , y >. /\ [ z / x ] ph ) |
5 |
4
|
nfex |
|- F/ x E. y ( w = <. z , y >. /\ [ z / x ] ph ) |
6 |
|
opeq1 |
|- ( x = z -> <. x , y >. = <. z , y >. ) |
7 |
6
|
eqeq2d |
|- ( x = z -> ( w = <. x , y >. <-> w = <. z , y >. ) ) |
8 |
|
sbequ12 |
|- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
9 |
7 8
|
anbi12d |
|- ( x = z -> ( ( w = <. x , y >. /\ ph ) <-> ( w = <. z , y >. /\ [ z / x ] ph ) ) ) |
10 |
9
|
exbidv |
|- ( x = z -> ( E. y ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. z , y >. /\ [ z / x ] ph ) ) ) |
11 |
1 5 10
|
cbvexv1 |
|- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ [ z / x ] ph ) ) |
12 |
11
|
abbii |
|- { w | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ [ z / x ] ph ) } |
13 |
|
df-opab |
|- { <. x , y >. | ph } = { w | E. x E. y ( w = <. x , y >. /\ ph ) } |
14 |
|
df-opab |
|- { <. z , y >. | [ z / x ] ph } = { w | E. z E. y ( w = <. z , y >. /\ [ z / x ] ph ) } |
15 |
12 13 14
|
3eqtr4i |
|- { <. x , y >. | ph } = { <. z , y >. | [ z / x ] ph } |