Metamath Proof Explorer


Theorem cbvopab1v

Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003) (Proof shortened by Eric Schmidt, 4-Apr-2007)

Ref Expression
Hypothesis cbvopab1v.1
|- ( x = z -> ( ph <-> ps ) )
Assertion cbvopab1v
|- { <. x , y >. | ph } = { <. z , y >. | ps }

Proof

Step Hyp Ref Expression
1 cbvopab1v.1
 |-  ( x = z -> ( ph <-> ps ) )
2 nfv
 |-  F/ z ph
3 nfv
 |-  F/ x ps
4 2 3 1 cbvopab1
 |-  { <. x , y >. | ph } = { <. z , y >. | ps }