Metamath Proof Explorer


Theorem cbvopab2v

Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999)

Ref Expression
Hypothesis cbvopab2v.1
|- ( y = z -> ( ph <-> ps ) )
Assertion cbvopab2v
|- { <. x , y >. | ph } = { <. x , z >. | ps }

Proof

Step Hyp Ref Expression
1 cbvopab2v.1
 |-  ( y = z -> ( ph <-> ps ) )
2 opeq2
 |-  ( y = z -> <. x , y >. = <. x , z >. )
3 2 eqeq2d
 |-  ( y = z -> ( w = <. x , y >. <-> w = <. x , z >. ) )
4 3 1 anbi12d
 |-  ( y = z -> ( ( w = <. x , y >. /\ ph ) <-> ( w = <. x , z >. /\ ps ) ) )
5 4 cbvexvw
 |-  ( E. y ( w = <. x , y >. /\ ph ) <-> E. z ( w = <. x , z >. /\ ps ) )
6 5 exbii
 |-  ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. z ( w = <. x , z >. /\ ps ) )
7 6 abbii
 |-  { w | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. x E. z ( w = <. x , z >. /\ ps ) }
8 df-opab
 |-  { <. x , y >. | ph } = { w | E. x E. y ( w = <. x , y >. /\ ph ) }
9 df-opab
 |-  { <. x , z >. | ps } = { w | E. x E. z ( w = <. x , z >. /\ ps ) }
10 7 8 9 3eqtr4i
 |-  { <. x , y >. | ph } = { <. x , z >. | ps }