Metamath Proof Explorer


Theorem cbvopabv

Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypothesis cbvopabv.1
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion cbvopabv
|- { <. x , y >. | ph } = { <. z , w >. | ps }

Proof

Step Hyp Ref Expression
1 cbvopabv.1
 |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
2 opeq12
 |-  ( ( x = z /\ y = w ) -> <. x , y >. = <. z , w >. )
3 2 eqeq2d
 |-  ( ( x = z /\ y = w ) -> ( v = <. x , y >. <-> v = <. z , w >. ) )
4 3 1 anbi12d
 |-  ( ( x = z /\ y = w ) -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. z , w >. /\ ps ) ) )
5 4 cbvex2vw
 |-  ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. z E. w ( v = <. z , w >. /\ ps ) )
6 5 abbii
 |-  { v | E. x E. y ( v = <. x , y >. /\ ph ) } = { v | E. z E. w ( v = <. z , w >. /\ ps ) }
7 df-opab
 |-  { <. x , y >. | ph } = { v | E. x E. y ( v = <. x , y >. /\ ph ) }
8 df-opab
 |-  { <. z , w >. | ps } = { v | E. z E. w ( v = <. z , w >. /\ ps ) }
9 6 7 8 3eqtr4i
 |-  { <. x , y >. | ph } = { <. z , w >. | ps }