| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvopabv.1 |
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
| 2 |
|
opeq12 |
|- ( ( x = z /\ y = w ) -> <. x , y >. = <. z , w >. ) |
| 3 |
2
|
eqeq2d |
|- ( ( x = z /\ y = w ) -> ( v = <. x , y >. <-> v = <. z , w >. ) ) |
| 4 |
3 1
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. z , w >. /\ ps ) ) ) |
| 5 |
4
|
cbvex2vw |
|- ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. z E. w ( v = <. z , w >. /\ ps ) ) |
| 6 |
5
|
abbii |
|- { v | E. x E. y ( v = <. x , y >. /\ ph ) } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
| 7 |
|
df-opab |
|- { <. x , y >. | ph } = { v | E. x E. y ( v = <. x , y >. /\ ph ) } |
| 8 |
|
df-opab |
|- { <. z , w >. | ps } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
| 9 |
6 7 8
|
3eqtr4i |
|- { <. x , y >. | ph } = { <. z , w >. | ps } |