Metamath Proof Explorer


Theorem cbvopabvOLD

Description: Obsolete version of cbvopabv as of 15-Oct-2024. (Contributed by NM, 15-Oct-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis cbvopabvOLD.1
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion cbvopabvOLD
|- { <. x , y >. | ph } = { <. z , w >. | ps }

Proof

Step Hyp Ref Expression
1 cbvopabvOLD.1
 |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
2 nfv
 |-  F/ z ph
3 nfv
 |-  F/ w ph
4 nfv
 |-  F/ x ps
5 nfv
 |-  F/ y ps
6 2 3 4 5 1 cbvopab
 |-  { <. x , y >. | ph } = { <. z , w >. | ps }