Step |
Hyp |
Ref |
Expression |
1 |
|
cbvoprab1.1 |
|- F/ w ph |
2 |
|
cbvoprab1.2 |
|- F/ x ps |
3 |
|
cbvoprab1.3 |
|- ( x = w -> ( ph <-> ps ) ) |
4 |
|
nfv |
|- F/ w v = <. x , y >. |
5 |
4 1
|
nfan |
|- F/ w ( v = <. x , y >. /\ ph ) |
6 |
5
|
nfex |
|- F/ w E. y ( v = <. x , y >. /\ ph ) |
7 |
|
nfv |
|- F/ x v = <. w , y >. |
8 |
7 2
|
nfan |
|- F/ x ( v = <. w , y >. /\ ps ) |
9 |
8
|
nfex |
|- F/ x E. y ( v = <. w , y >. /\ ps ) |
10 |
|
opeq1 |
|- ( x = w -> <. x , y >. = <. w , y >. ) |
11 |
10
|
eqeq2d |
|- ( x = w -> ( v = <. x , y >. <-> v = <. w , y >. ) ) |
12 |
11 3
|
anbi12d |
|- ( x = w -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. w , y >. /\ ps ) ) ) |
13 |
12
|
exbidv |
|- ( x = w -> ( E. y ( v = <. x , y >. /\ ph ) <-> E. y ( v = <. w , y >. /\ ps ) ) ) |
14 |
6 9 13
|
cbvexv1 |
|- ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. w E. y ( v = <. w , y >. /\ ps ) ) |
15 |
14
|
opabbii |
|- { <. v , z >. | E. x E. y ( v = <. x , y >. /\ ph ) } = { <. v , z >. | E. w E. y ( v = <. w , y >. /\ ps ) } |
16 |
|
dfoprab2 |
|- { <. <. x , y >. , z >. | ph } = { <. v , z >. | E. x E. y ( v = <. x , y >. /\ ph ) } |
17 |
|
dfoprab2 |
|- { <. <. w , y >. , z >. | ps } = { <. v , z >. | E. w E. y ( v = <. w , y >. /\ ps ) } |
18 |
15 16 17
|
3eqtr4i |
|- { <. <. x , y >. , z >. | ph } = { <. <. w , y >. , z >. | ps } |