| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvoprab12.1 |
|- F/ w ph |
| 2 |
|
cbvoprab12.2 |
|- F/ v ph |
| 3 |
|
cbvoprab12.3 |
|- F/ x ps |
| 4 |
|
cbvoprab12.4 |
|- F/ y ps |
| 5 |
|
cbvoprab12.5 |
|- ( ( x = w /\ y = v ) -> ( ph <-> ps ) ) |
| 6 |
|
nfv |
|- F/ w u = <. x , y >. |
| 7 |
6 1
|
nfan |
|- F/ w ( u = <. x , y >. /\ ph ) |
| 8 |
|
nfv |
|- F/ v u = <. x , y >. |
| 9 |
8 2
|
nfan |
|- F/ v ( u = <. x , y >. /\ ph ) |
| 10 |
|
nfv |
|- F/ x u = <. w , v >. |
| 11 |
10 3
|
nfan |
|- F/ x ( u = <. w , v >. /\ ps ) |
| 12 |
|
nfv |
|- F/ y u = <. w , v >. |
| 13 |
12 4
|
nfan |
|- F/ y ( u = <. w , v >. /\ ps ) |
| 14 |
|
opeq12 |
|- ( ( x = w /\ y = v ) -> <. x , y >. = <. w , v >. ) |
| 15 |
14
|
eqeq2d |
|- ( ( x = w /\ y = v ) -> ( u = <. x , y >. <-> u = <. w , v >. ) ) |
| 16 |
15 5
|
anbi12d |
|- ( ( x = w /\ y = v ) -> ( ( u = <. x , y >. /\ ph ) <-> ( u = <. w , v >. /\ ps ) ) ) |
| 17 |
7 9 11 13 16
|
cbvex2v |
|- ( E. x E. y ( u = <. x , y >. /\ ph ) <-> E. w E. v ( u = <. w , v >. /\ ps ) ) |
| 18 |
17
|
opabbii |
|- { <. u , z >. | E. x E. y ( u = <. x , y >. /\ ph ) } = { <. u , z >. | E. w E. v ( u = <. w , v >. /\ ps ) } |
| 19 |
|
dfoprab2 |
|- { <. <. x , y >. , z >. | ph } = { <. u , z >. | E. x E. y ( u = <. x , y >. /\ ph ) } |
| 20 |
|
dfoprab2 |
|- { <. <. w , v >. , z >. | ps } = { <. u , z >. | E. w E. v ( u = <. w , v >. /\ ps ) } |
| 21 |
18 19 20
|
3eqtr4i |
|- { <. <. x , y >. , z >. | ph } = { <. <. w , v >. , z >. | ps } |