| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvoprab2.1 |  |-  F/ w ph | 
						
							| 2 |  | cbvoprab2.2 |  |-  F/ y ps | 
						
							| 3 |  | cbvoprab2.3 |  |-  ( y = w -> ( ph <-> ps ) ) | 
						
							| 4 |  | nfv |  |-  F/ w v = <. <. x , y >. , z >. | 
						
							| 5 | 4 1 | nfan |  |-  F/ w ( v = <. <. x , y >. , z >. /\ ph ) | 
						
							| 6 | 5 | nfex |  |-  F/ w E. z ( v = <. <. x , y >. , z >. /\ ph ) | 
						
							| 7 |  | nfv |  |-  F/ y v = <. <. x , w >. , z >. | 
						
							| 8 | 7 2 | nfan |  |-  F/ y ( v = <. <. x , w >. , z >. /\ ps ) | 
						
							| 9 | 8 | nfex |  |-  F/ y E. z ( v = <. <. x , w >. , z >. /\ ps ) | 
						
							| 10 |  | opeq2 |  |-  ( y = w -> <. x , y >. = <. x , w >. ) | 
						
							| 11 | 10 | opeq1d |  |-  ( y = w -> <. <. x , y >. , z >. = <. <. x , w >. , z >. ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( y = w -> ( v = <. <. x , y >. , z >. <-> v = <. <. x , w >. , z >. ) ) | 
						
							| 13 | 12 3 | anbi12d |  |-  ( y = w -> ( ( v = <. <. x , y >. , z >. /\ ph ) <-> ( v = <. <. x , w >. , z >. /\ ps ) ) ) | 
						
							| 14 | 13 | exbidv |  |-  ( y = w -> ( E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. z ( v = <. <. x , w >. , z >. /\ ps ) ) ) | 
						
							| 15 | 6 9 14 | cbvexv1 |  |-  ( E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) ) | 
						
							| 16 | 15 | exbii |  |-  ( E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. x E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) ) | 
						
							| 17 | 16 | abbii |  |-  { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } = { v | E. x E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) } | 
						
							| 18 |  | df-oprab |  |-  { <. <. x , y >. , z >. | ph } = { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } | 
						
							| 19 |  | df-oprab |  |-  { <. <. x , w >. , z >. | ps } = { v | E. x E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) } | 
						
							| 20 | 17 18 19 | 3eqtr4i |  |-  { <. <. x , y >. , z >. | ph } = { <. <. x , w >. , z >. | ps } |