Metamath Proof Explorer


Theorem cbvprodi

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses cbvprodi.1
|- F/_ k B
cbvprodi.2
|- F/_ j C
cbvprodi.3
|- ( j = k -> B = C )
Assertion cbvprodi
|- prod_ j e. A B = prod_ k e. A C

Proof

Step Hyp Ref Expression
1 cbvprodi.1
 |-  F/_ k B
2 cbvprodi.2
 |-  F/_ j C
3 cbvprodi.3
 |-  ( j = k -> B = C )
4 nfcv
 |-  F/_ k A
5 nfcv
 |-  F/_ j A
6 3 4 5 1 2 cbvprod
 |-  prod_ j e. A B = prod_ k e. A C