Metamath Proof Explorer


Theorem cbvrabv

Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)

Ref Expression
Hypothesis cbvrabv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrabv
|- { x e. A | ph } = { y e. A | ps }

Proof

Step Hyp Ref Expression
1 cbvrabv.1
 |-  ( x = y -> ( ph <-> ps ) )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 1 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) )
4 3 cbvabv
 |-  { x | ( x e. A /\ ph ) } = { y | ( y e. A /\ ps ) }
5 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
6 df-rab
 |-  { y e. A | ps } = { y | ( y e. A /\ ps ) }
7 4 5 6 3eqtr4i
 |-  { x e. A | ph } = { y e. A | ps }