Metamath Proof Explorer


Theorem cbvrabv2w

Description: A more general version of cbvrabv . Version of cbvrabv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Glauco Siliprandi, 23-Oct-2021) (Revised by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrabv2w.1
|- ( x = y -> A = B )
cbvrabv2w.2
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrabv2w
|- { x e. A | ph } = { y e. B | ps }

Proof

Step Hyp Ref Expression
1 cbvrabv2w.1
 |-  ( x = y -> A = B )
2 cbvrabv2w.2
 |-  ( x = y -> ( ph <-> ps ) )
3 id
 |-  ( x = y -> x = y )
4 3 1 eleq12d
 |-  ( x = y -> ( x e. A <-> y e. B ) )
5 4 2 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) )
6 5 cbvabv
 |-  { x | ( x e. A /\ ph ) } = { y | ( y e. B /\ ps ) }
7 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
8 df-rab
 |-  { y e. B | ps } = { y | ( y e. B /\ ps ) }
9 6 7 8 3eqtr4i
 |-  { x e. A | ph } = { y e. B | ps }