Description: A more general version of cbvrabv . Version of cbvrabv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Glauco Siliprandi, 23-Oct-2021) (Revised by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrabv2w.1 | |- ( x = y -> A = B )  | 
					|
| cbvrabv2w.2 | |- ( x = y -> ( ph <-> ps ) )  | 
					||
| Assertion | cbvrabv2w | |- { x e. A | ph } = { y e. B | ps } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvrabv2w.1 | |- ( x = y -> A = B )  | 
						|
| 2 | cbvrabv2w.2 | |- ( x = y -> ( ph <-> ps ) )  | 
						|
| 3 | id | |- ( x = y -> x = y )  | 
						|
| 4 | 3 1 | eleq12d | |- ( x = y -> ( x e. A <-> y e. B ) )  | 
						
| 5 | 4 2 | anbi12d | |- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) )  | 
						
| 6 | 5 | cbvabv |  |-  { x | ( x e. A /\ ph ) } = { y | ( y e. B /\ ps ) } | 
						
| 7 | df-rab |  |-  { x e. A | ph } = { x | ( x e. A /\ ph ) } | 
						|
| 8 | df-rab |  |-  { y e. B | ps } = { y | ( y e. B /\ ps ) } | 
						|
| 9 | 6 7 8 | 3eqtr4i |  |-  { x e. A | ph } = { y e. B | ps } |