Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted class abstraction
cbvrabw
Metamath Proof Explorer
Description: Rule to change the bound variable in a restricted class abstraction,
using implicit substitution. Version of cbvrab with a disjoint
variable condition, which does not require ax-13 . (Contributed by Andrew Salmon , 11-Jul-2011) Avoid ax-13 . (Revised by GG , 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen , 19-Jul-2025)
Ref
Expression
Hypotheses
cbvrabw.1
|- F/_ x A
cbvrabw.2
|- F/_ y A
cbvrabw.3
|- F/ y ph
cbvrabw.4
|- F/ x ps
cbvrabw.5
|- ( x = y -> ( ph <-> ps ) )
Assertion
cbvrabw
|- { x e. A | ph } = { y e. A | ps }
Proof
Step
Hyp
Ref
Expression
1
cbvrabw.1
|- F/_ x A
2
cbvrabw.2
|- F/_ y A
3
cbvrabw.3
|- F/ y ph
4
cbvrabw.4
|- F/ x ps
5
cbvrabw.5
|- ( x = y -> ( ph <-> ps ) )
6
2
nfcri
|- F/ y x e. A
7
6 3
nfan
|- F/ y ( x e. A /\ ph )
8
1
nfcri
|- F/ x y e. A
9
8 4
nfan
|- F/ x ( y e. A /\ ps )
10
eleq1w
|- ( x = y -> ( x e. A <-> y e. A ) )
11
10 5
anbi12d
|- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) )
12
7 9 11
cbvabw
|- { x | ( x e. A /\ ph ) } = { y | ( y e. A /\ ps ) }
13
df-rab
|- { x e. A | ph } = { x | ( x e. A /\ ph ) }
14
df-rab
|- { y e. A | ps } = { y | ( y e. A /\ ps ) }
15
12 13 14
3eqtr4i
|- { x e. A | ph } = { y e. A | ps }