Step |
Hyp |
Ref |
Expression |
1 |
|
cbvrabw.1 |
|- F/_ x A |
2 |
|
cbvrabw.2 |
|- F/_ y A |
3 |
|
cbvrabw.3 |
|- F/ y ph |
4 |
|
cbvrabw.4 |
|- F/ x ps |
5 |
|
cbvrabw.5 |
|- ( x = y -> ( ph <-> ps ) ) |
6 |
|
nfv |
|- F/ z ( x e. A /\ ph ) |
7 |
1
|
nfcri |
|- F/ x z e. A |
8 |
|
nfs1v |
|- F/ x [ z / x ] ph |
9 |
7 8
|
nfan |
|- F/ x ( z e. A /\ [ z / x ] ph ) |
10 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
11 |
|
sbequ12 |
|- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
12 |
10 11
|
anbi12d |
|- ( x = z -> ( ( x e. A /\ ph ) <-> ( z e. A /\ [ z / x ] ph ) ) ) |
13 |
6 9 12
|
cbvabw |
|- { x | ( x e. A /\ ph ) } = { z | ( z e. A /\ [ z / x ] ph ) } |
14 |
2
|
nfcri |
|- F/ y z e. A |
15 |
3
|
nfsbv |
|- F/ y [ z / x ] ph |
16 |
14 15
|
nfan |
|- F/ y ( z e. A /\ [ z / x ] ph ) |
17 |
|
nfv |
|- F/ z ( y e. A /\ ps ) |
18 |
|
eleq1w |
|- ( z = y -> ( z e. A <-> y e. A ) ) |
19 |
|
sbequ |
|- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
20 |
4 5
|
sbiev |
|- ( [ y / x ] ph <-> ps ) |
21 |
19 20
|
bitrdi |
|- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
22 |
18 21
|
anbi12d |
|- ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) |
23 |
16 17 22
|
cbvabw |
|- { z | ( z e. A /\ [ z / x ] ph ) } = { y | ( y e. A /\ ps ) } |
24 |
13 23
|
eqtri |
|- { x | ( x e. A /\ ph ) } = { y | ( y e. A /\ ps ) } |
25 |
|
df-rab |
|- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
26 |
|
df-rab |
|- { y e. A | ps } = { y | ( y e. A /\ ps ) } |
27 |
24 25 26
|
3eqtr4i |
|- { x e. A | ph } = { y e. A | ps } |