Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvral2vw when possible. (Contributed by NM, 10-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvral2v.1 | |- ( x = z -> ( ph <-> ch ) ) |
|
cbvral2v.2 | |- ( y = w -> ( ch <-> ps ) ) |
||
Assertion | cbvral2v | |- ( A. x e. A A. y e. B ph <-> A. z e. A A. w e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral2v.1 | |- ( x = z -> ( ph <-> ch ) ) |
|
2 | cbvral2v.2 | |- ( y = w -> ( ch <-> ps ) ) |
|
3 | 1 | ralbidv | |- ( x = z -> ( A. y e. B ph <-> A. y e. B ch ) ) |
4 | 3 | cbvralv | |- ( A. x e. A A. y e. B ph <-> A. z e. A A. y e. B ch ) |
5 | 2 | cbvralv | |- ( A. y e. B ch <-> A. w e. B ps ) |
6 | 5 | ralbii | |- ( A. z e. A A. y e. B ch <-> A. z e. A A. w e. B ps ) |
7 | 4 6 | bitri | |- ( A. x e. A A. y e. B ph <-> A. z e. A A. w e. B ps ) |