Metamath Proof Explorer


Theorem cbvraldva

Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Hypothesis cbvraldva.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvraldva
|- ( ph -> ( A. x e. A ps <-> A. y e. A ch ) )

Proof

Step Hyp Ref Expression
1 cbvraldva.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 ancoms
 |-  ( ( x = y /\ ph ) -> ( ps <-> ch ) )
3 2 pm5.74da
 |-  ( x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) )
4 3 cbvralvw
 |-  ( A. x e. A ( ph -> ps ) <-> A. y e. A ( ph -> ch ) )
5 r19.21v
 |-  ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) )
6 r19.21v
 |-  ( A. y e. A ( ph -> ch ) <-> ( ph -> A. y e. A ch ) )
7 4 5 6 3bitr3i
 |-  ( ( ph -> A. x e. A ps ) <-> ( ph -> A. y e. A ch ) )
8 7 pm5.74ri
 |-  ( ph -> ( A. x e. A ps <-> A. y e. A ch ) )