Metamath Proof Explorer


Theorem cbvraldvaOLD

Description: Obsolete version of cbvraldva as of 9-Mar-2025. (Contributed by David Moews, 1-May-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis cbvrexdva.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvraldvaOLD
|- ( ph -> ( A. x e. A ps <-> A. y e. A ch ) )

Proof

Step Hyp Ref Expression
1 cbvrexdva.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 eqidd
 |-  ( ( ph /\ x = y ) -> A = A )
3 1 2 cbvraldva2
 |-  ( ph -> ( A. x e. A ps <-> A. y e. A ch ) )