Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralsvw when possible. (Contributed by NM, 20-Nov-2005) (Revised by Andrew Salmon, 11-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cbvralsv | |- ( A. x e. A ph <-> A. y e. A [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ z ph |
|
| 2 | nfs1v | |- F/ x [ z / x ] ph |
|
| 3 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 4 | 1 2 3 | cbvral | |- ( A. x e. A ph <-> A. z e. A [ z / x ] ph ) |
| 5 | nfv | |- F/ y ph |
|
| 6 | 5 | nfsb | |- F/ y [ z / x ] ph |
| 7 | nfv | |- F/ z [ y / x ] ph |
|
| 8 | sbequ | |- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
|
| 9 | 6 7 8 | cbvral | |- ( A. z e. A [ z / x ] ph <-> A. y e. A [ y / x ] ph ) |
| 10 | 4 9 | bitri | |- ( A. x e. A ph <-> A. y e. A [ y / x ] ph ) |