Metamath Proof Explorer


Theorem cbvralsv

Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralsvw when possible. (Contributed by NM, 20-Nov-2005) (Revised by Andrew Salmon, 11-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion cbvralsv
|- ( A. x e. A ph <-> A. y e. A [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ z ph
2 nfs1v
 |-  F/ x [ z / x ] ph
3 sbequ12
 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )
4 1 2 3 cbvral
 |-  ( A. x e. A ph <-> A. z e. A [ z / x ] ph )
5 nfv
 |-  F/ y ph
6 5 nfsb
 |-  F/ y [ z / x ] ph
7 nfv
 |-  F/ z [ y / x ] ph
8 sbequ
 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )
9 6 7 8 cbvral
 |-  ( A. z e. A [ z / x ] ph <-> A. y e. A [ y / x ] ph )
10 4 9 bitri
 |-  ( A. x e. A ph <-> A. y e. A [ y / x ] ph )