Metamath Proof Explorer


Theorem cbvralv

Description: Change the bound variable of a restricted universal quantifier using implicit substitution. See cbvralvw based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralvw when possible. (Contributed by NM, 28-Jan-1997) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvralv
|- ( A. x e. A ph <-> A. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralv.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nfv
 |-  F/ y ph
3 nfv
 |-  F/ x ps
4 2 3 1 cbvral
 |-  ( A. x e. A ph <-> A. y e. A ps )