Metamath Proof Explorer


Theorem cbvreuvwOLD

Description: Obsolete version of cbvreuvw as of 30-Sep-2024. (Contributed by NM, 5-Apr-2004) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralvw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvreuvwOLD
|- ( E! x e. A ph <-> E! y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralvw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nfv
 |-  F/ y ph
3 nfv
 |-  F/ x ps
4 2 3 1 cbvreuw
 |-  ( E! x e. A ph <-> E! y e. A ps )