Metamath Proof Explorer


Theorem cbvreuw

Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen, 10-Dec-2024)

Ref Expression
Hypotheses cbvreuw.1
|- F/ y ph
cbvreuw.2
|- F/ x ps
cbvreuw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvreuw
|- ( E! x e. A ph <-> E! y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvreuw.1
 |-  F/ y ph
2 cbvreuw.2
 |-  F/ x ps
3 cbvreuw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvrexw
 |-  ( E. x e. A ph <-> E. y e. A ps )
5 1 2 3 cbvrmow
 |-  ( E* x e. A ph <-> E* y e. A ps )
6 4 5 anbi12i
 |-  ( ( E. x e. A ph /\ E* x e. A ph ) <-> ( E. y e. A ps /\ E* y e. A ps ) )
7 reu5
 |-  ( E! x e. A ph <-> ( E. x e. A ph /\ E* x e. A ph ) )
8 reu5
 |-  ( E! y e. A ps <-> ( E. y e. A ps /\ E* y e. A ps ) )
9 6 7 8 3bitr4i
 |-  ( E! x e. A ph <-> E! y e. A ps )