| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvreuwOLD.1 |  |-  F/ y ph | 
						
							| 2 |  | cbvreuwOLD.2 |  |-  F/ x ps | 
						
							| 3 |  | cbvreuwOLD.3 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 4 |  | nfv |  |-  F/ z ( x e. A /\ ph ) | 
						
							| 5 | 4 | sb8euv |  |-  ( E! x ( x e. A /\ ph ) <-> E! z [ z / x ] ( x e. A /\ ph ) ) | 
						
							| 6 |  | sban |  |-  ( [ z / x ] ( x e. A /\ ph ) <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) | 
						
							| 7 | 6 | eubii |  |-  ( E! z [ z / x ] ( x e. A /\ ph ) <-> E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) ) | 
						
							| 8 |  | clelsb1 |  |-  ( [ z / x ] x e. A <-> z e. A ) | 
						
							| 9 | 8 | anbi1i |  |-  ( ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> ( z e. A /\ [ z / x ] ph ) ) | 
						
							| 10 | 9 | eubii |  |-  ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! z ( z e. A /\ [ z / x ] ph ) ) | 
						
							| 11 |  | nfv |  |-  F/ y z e. A | 
						
							| 12 | 1 | nfsbv |  |-  F/ y [ z / x ] ph | 
						
							| 13 | 11 12 | nfan |  |-  F/ y ( z e. A /\ [ z / x ] ph ) | 
						
							| 14 |  | nfv |  |-  F/ z ( y e. A /\ ps ) | 
						
							| 15 |  | eleq1w |  |-  ( z = y -> ( z e. A <-> y e. A ) ) | 
						
							| 16 |  | sbequ |  |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) | 
						
							| 17 | 2 3 | sbiev |  |-  ( [ y / x ] ph <-> ps ) | 
						
							| 18 | 16 17 | bitrdi |  |-  ( z = y -> ( [ z / x ] ph <-> ps ) ) | 
						
							| 19 | 15 18 | anbi12d |  |-  ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) | 
						
							| 20 | 13 14 19 | cbveuw |  |-  ( E! z ( z e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) ) | 
						
							| 21 | 10 20 | bitri |  |-  ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) ) | 
						
							| 22 | 5 7 21 | 3bitri |  |-  ( E! x ( x e. A /\ ph ) <-> E! y ( y e. A /\ ps ) ) | 
						
							| 23 |  | df-reu |  |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) | 
						
							| 24 |  | df-reu |  |-  ( E! y e. A ps <-> E! y ( y e. A /\ ps ) ) | 
						
							| 25 | 22 23 24 | 3bitr4i |  |-  ( E! x e. A ph <-> E! y e. A ps ) |