Metamath Proof Explorer


Theorem cbvrex2vw

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v with a disjoint variable condition, which does not require ax-13 . (Contributed by FL, 2-Jul-2012) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrex2vw.1
|- ( x = z -> ( ph <-> ch ) )
cbvrex2vw.2
|- ( y = w -> ( ch <-> ps ) )
Assertion cbvrex2vw
|- ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps )

Proof

Step Hyp Ref Expression
1 cbvrex2vw.1
 |-  ( x = z -> ( ph <-> ch ) )
2 cbvrex2vw.2
 |-  ( y = w -> ( ch <-> ps ) )
3 1 rexbidv
 |-  ( x = z -> ( E. y e. B ph <-> E. y e. B ch ) )
4 3 cbvrexvw
 |-  ( E. x e. A E. y e. B ph <-> E. z e. A E. y e. B ch )
5 2 cbvrexvw
 |-  ( E. y e. B ch <-> E. w e. B ps )
6 5 rexbii
 |-  ( E. z e. A E. y e. B ch <-> E. z e. A E. w e. B ps )
7 4 6 bitri
 |-  ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps )