Metamath Proof Explorer


Theorem cbvrexcsf

Description: A more general version of cbvrexf that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (Proof shortened by Mario Carneiro, 7-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1
|- F/_ y A
cbvralcsf.2
|- F/_ x B
cbvralcsf.3
|- F/ y ph
cbvralcsf.4
|- F/ x ps
cbvralcsf.5
|- ( x = y -> A = B )
cbvralcsf.6
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrexcsf
|- ( E. x e. A ph <-> E. y e. B ps )

Proof

Step Hyp Ref Expression
1 cbvralcsf.1
 |-  F/_ y A
2 cbvralcsf.2
 |-  F/_ x B
3 cbvralcsf.3
 |-  F/ y ph
4 cbvralcsf.4
 |-  F/ x ps
5 cbvralcsf.5
 |-  ( x = y -> A = B )
6 cbvralcsf.6
 |-  ( x = y -> ( ph <-> ps ) )
7 3 nfn
 |-  F/ y -. ph
8 4 nfn
 |-  F/ x -. ps
9 6 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
10 1 2 7 8 5 9 cbvralcsf
 |-  ( A. x e. A -. ph <-> A. y e. B -. ps )
11 10 notbii
 |-  ( -. A. x e. A -. ph <-> -. A. y e. B -. ps )
12 dfrex2
 |-  ( E. x e. A ph <-> -. A. x e. A -. ph )
13 dfrex2
 |-  ( E. y e. B ps <-> -. A. y e. B -. ps )
14 11 12 13 3bitr4i
 |-  ( E. x e. A ph <-> E. y e. B ps )