Description: A more general version of cbvrexf that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (Proof shortened by Mario Carneiro, 7-Dec-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvralcsf.1 | |- F/_ y A |
|
cbvralcsf.2 | |- F/_ x B |
||
cbvralcsf.3 | |- F/ y ph |
||
cbvralcsf.4 | |- F/ x ps |
||
cbvralcsf.5 | |- ( x = y -> A = B ) |
||
cbvralcsf.6 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | cbvrexcsf | |- ( E. x e. A ph <-> E. y e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralcsf.1 | |- F/_ y A |
|
2 | cbvralcsf.2 | |- F/_ x B |
|
3 | cbvralcsf.3 | |- F/ y ph |
|
4 | cbvralcsf.4 | |- F/ x ps |
|
5 | cbvralcsf.5 | |- ( x = y -> A = B ) |
|
6 | cbvralcsf.6 | |- ( x = y -> ( ph <-> ps ) ) |
|
7 | 3 | nfn | |- F/ y -. ph |
8 | 4 | nfn | |- F/ x -. ps |
9 | 6 | notbid | |- ( x = y -> ( -. ph <-> -. ps ) ) |
10 | 1 2 7 8 5 9 | cbvralcsf | |- ( A. x e. A -. ph <-> A. y e. B -. ps ) |
11 | 10 | notbii | |- ( -. A. x e. A -. ph <-> -. A. y e. B -. ps ) |
12 | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
|
13 | dfrex2 | |- ( E. y e. B ps <-> -. A. y e. B -. ps ) |
|
14 | 11 12 13 | 3bitr4i | |- ( E. x e. A ph <-> E. y e. B ps ) |