Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvraldva.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
Assertion | cbvrexdva | |- ( ph -> ( E. x e. A ps <-> E. y e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
2 | eqidd | |- ( ( ph /\ x = y ) -> A = A ) |
|
3 | 1 2 | cbvrexdva2 | |- ( ph -> ( E. x e. A ps <-> E. y e. A ch ) ) |