Metamath Proof Explorer


Theorem cbvrexdva2

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 12-Aug-2023)

Ref Expression
Hypotheses cbvraldva2.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
cbvraldva2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvrexdva2
|- ( ph -> ( E. x e. A ps <-> E. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 cbvraldva2.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 cbvraldva2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 simpr
 |-  ( ( ph /\ x = y ) -> x = y )
4 3 2 eleq12d
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) )
5 4 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) )
6 5 ancoms
 |-  ( ( x = y /\ ph ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) )
7 6 pm5.32da
 |-  ( x = y -> ( ( ph /\ ( x e. A /\ ps ) ) <-> ( ph /\ ( y e. B /\ ch ) ) ) )
8 7 cbvexvw
 |-  ( E. x ( ph /\ ( x e. A /\ ps ) ) <-> E. y ( ph /\ ( y e. B /\ ch ) ) )
9 19.42v
 |-  ( E. x ( ph /\ ( x e. A /\ ps ) ) <-> ( ph /\ E. x ( x e. A /\ ps ) ) )
10 19.42v
 |-  ( E. y ( ph /\ ( y e. B /\ ch ) ) <-> ( ph /\ E. y ( y e. B /\ ch ) ) )
11 8 9 10 3bitr3i
 |-  ( ( ph /\ E. x ( x e. A /\ ps ) ) <-> ( ph /\ E. y ( y e. B /\ ch ) ) )
12 pm5.32
 |-  ( ( ph -> ( E. x ( x e. A /\ ps ) <-> E. y ( y e. B /\ ch ) ) ) <-> ( ( ph /\ E. x ( x e. A /\ ps ) ) <-> ( ph /\ E. y ( y e. B /\ ch ) ) ) )
13 11 12 mpbir
 |-  ( ph -> ( E. x ( x e. A /\ ps ) <-> E. y ( y e. B /\ ch ) ) )
14 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
15 df-rex
 |-  ( E. y e. B ch <-> E. y ( y e. B /\ ch ) )
16 13 14 15 3bitr4g
 |-  ( ph -> ( E. x e. A ps <-> E. y e. B ch ) )