Metamath Proof Explorer


Theorem cbvrexf

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexfw when possible. (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralf.1
|- F/_ x A
cbvralf.2
|- F/_ y A
cbvralf.3
|- F/ y ph
cbvralf.4
|- F/ x ps
cbvralf.5
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrexf
|- ( E. x e. A ph <-> E. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralf.1
 |-  F/_ x A
2 cbvralf.2
 |-  F/_ y A
3 cbvralf.3
 |-  F/ y ph
4 cbvralf.4
 |-  F/ x ps
5 cbvralf.5
 |-  ( x = y -> ( ph <-> ps ) )
6 3 nfn
 |-  F/ y -. ph
7 4 nfn
 |-  F/ x -. ps
8 5 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
9 1 2 6 7 8 cbvralf
 |-  ( A. x e. A -. ph <-> A. y e. A -. ps )
10 9 notbii
 |-  ( -. A. x e. A -. ph <-> -. A. y e. A -. ps )
11 dfrex2
 |-  ( E. x e. A ph <-> -. A. x e. A -. ph )
12 dfrex2
 |-  ( E. y e. A ps <-> -. A. y e. A -. ps )
13 10 11 12 3bitr4i
 |-  ( E. x e. A ph <-> E. y e. A ps )