Metamath Proof Explorer


Theorem cbvrexsvw

Description: Change bound variable by using a substitution. Version of cbvrexsv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 2-Mar-2008) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Assertion cbvrexsvw
|- ( E. x e. A ph <-> E. y e. A [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ z ph
2 nfs1v
 |-  F/ x [ z / x ] ph
3 sbequ12
 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )
4 1 2 3 cbvrexw
 |-  ( E. x e. A ph <-> E. z e. A [ z / x ] ph )
5 nfv
 |-  F/ y [ z / x ] ph
6 nfv
 |-  F/ z [ y / x ] ph
7 sbequ
 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )
8 5 6 7 cbvrexw
 |-  ( E. z e. A [ z / x ] ph <-> E. y e. A [ y / x ] ph )
9 4 8 bitri
 |-  ( E. x e. A ph <-> E. y e. A [ y / x ] ph )