Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by David Moews, 1-May-2017) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvralv2.1 | |- ( x = y -> ( ps <-> ch ) ) |
|
cbvralv2.2 | |- ( x = y -> A = B ) |
||
Assertion | cbvrexv2 | |- ( E. x e. A ps <-> E. y e. B ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralv2.1 | |- ( x = y -> ( ps <-> ch ) ) |
|
2 | cbvralv2.2 | |- ( x = y -> A = B ) |
|
3 | nfcv | |- F/_ y A |
|
4 | nfcv | |- F/_ x B |
|
5 | nfv | |- F/ y ps |
|
6 | nfv | |- F/ x ch |
|
7 | 3 4 5 6 2 1 | cbvrexcsf | |- ( E. x e. A ps <-> E. y e. B ch ) |