Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by David Moews, 1-May-2017) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvralv2.1 | |- ( x = y -> ( ps <-> ch ) ) | |
| cbvralv2.2 | |- ( x = y -> A = B ) | ||
| Assertion | cbvrexv2 | |- ( E. x e. A ps <-> E. y e. B ch ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvralv2.1 | |- ( x = y -> ( ps <-> ch ) ) | |
| 2 | cbvralv2.2 | |- ( x = y -> A = B ) | |
| 3 | nfcv | |- F/_ y A | |
| 4 | nfcv | |- F/_ x B | |
| 5 | nfv | |- F/ y ps | |
| 6 | nfv | |- F/ x ch | |
| 7 | 3 4 5 6 2 1 | cbvrexcsf | |- ( E. x e. A ps <-> E. y e. B ch ) |