Metamath Proof Explorer


Theorem cbvrexw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvrex with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 31-Jul-2003) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvralw.1
|- F/ y ph
cbvralw.2
|- F/ x ps
cbvralw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrexw
|- ( E. x e. A ph <-> E. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralw.1
 |-  F/ y ph
2 cbvralw.2
 |-  F/ x ps
3 cbvralw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 nfcv
 |-  F/_ x A
5 nfcv
 |-  F/_ y A
6 4 5 1 2 3 cbvrexfw
 |-  ( E. x e. A ph <-> E. y e. A ps )