| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvriota.1 |  |-  F/ y ph | 
						
							| 2 |  | cbvriota.2 |  |-  F/ x ps | 
						
							| 3 |  | cbvriota.3 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 4 |  | eleq1w |  |-  ( x = z -> ( x e. A <-> z e. A ) ) | 
						
							| 5 |  | sbequ12 |  |-  ( x = z -> ( ph <-> [ z / x ] ph ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( x = z -> ( ( x e. A /\ ph ) <-> ( z e. A /\ [ z / x ] ph ) ) ) | 
						
							| 7 |  | nfv |  |-  F/ z ( x e. A /\ ph ) | 
						
							| 8 |  | nfv |  |-  F/ x z e. A | 
						
							| 9 |  | nfs1v |  |-  F/ x [ z / x ] ph | 
						
							| 10 | 8 9 | nfan |  |-  F/ x ( z e. A /\ [ z / x ] ph ) | 
						
							| 11 | 6 7 10 | cbviota |  |-  ( iota x ( x e. A /\ ph ) ) = ( iota z ( z e. A /\ [ z / x ] ph ) ) | 
						
							| 12 |  | eleq1w |  |-  ( z = y -> ( z e. A <-> y e. A ) ) | 
						
							| 13 |  | sbequ |  |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) | 
						
							| 14 | 2 3 | sbie |  |-  ( [ y / x ] ph <-> ps ) | 
						
							| 15 | 13 14 | bitrdi |  |-  ( z = y -> ( [ z / x ] ph <-> ps ) ) | 
						
							| 16 | 12 15 | anbi12d |  |-  ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) | 
						
							| 17 |  | nfv |  |-  F/ y z e. A | 
						
							| 18 | 1 | nfsb |  |-  F/ y [ z / x ] ph | 
						
							| 19 | 17 18 | nfan |  |-  F/ y ( z e. A /\ [ z / x ] ph ) | 
						
							| 20 |  | nfv |  |-  F/ z ( y e. A /\ ps ) | 
						
							| 21 | 16 19 20 | cbviota |  |-  ( iota z ( z e. A /\ [ z / x ] ph ) ) = ( iota y ( y e. A /\ ps ) ) | 
						
							| 22 | 11 21 | eqtri |  |-  ( iota x ( x e. A /\ ph ) ) = ( iota y ( y e. A /\ ps ) ) | 
						
							| 23 |  | df-riota |  |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) ) | 
						
							| 24 |  | df-riota |  |-  ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) ) | 
						
							| 25 | 22 23 24 | 3eqtr4i |  |-  ( iota_ x e. A ph ) = ( iota_ y e. A ps ) |