Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrmow , cbvrmovw when possible. (Contributed by NM, 16-Jun-2017) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvral.1 | |- F/ y ph |
|
cbvral.2 | |- F/ x ps |
||
cbvral.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | cbvrmo | |- ( E* x e. A ph <-> E* y e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral.1 | |- F/ y ph |
|
2 | cbvral.2 | |- F/ x ps |
|
3 | cbvral.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
4 | 1 2 3 | cbvrex | |- ( E. x e. A ph <-> E. y e. A ps ) |
5 | 1 2 3 | cbvreu | |- ( E! x e. A ph <-> E! y e. A ps ) |
6 | 4 5 | imbi12i | |- ( ( E. x e. A ph -> E! x e. A ph ) <-> ( E. y e. A ps -> E! y e. A ps ) ) |
7 | rmo5 | |- ( E* x e. A ph <-> ( E. x e. A ph -> E! x e. A ph ) ) |
|
8 | rmo5 | |- ( E* y e. A ps <-> ( E. y e. A ps -> E! y e. A ps ) ) |
|
9 | 6 7 8 | 3bitr4i | |- ( E* x e. A ph <-> E* y e. A ps ) |