Metamath Proof Explorer


Theorem cbvrmo

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrmow , cbvrmovw when possible. (Contributed by NM, 16-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral.1
|- F/ y ph
cbvral.2
|- F/ x ps
cbvral.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrmo
|- ( E* x e. A ph <-> E* y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvral.1
 |-  F/ y ph
2 cbvral.2
 |-  F/ x ps
3 cbvral.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvrex
 |-  ( E. x e. A ph <-> E. y e. A ps )
5 1 2 3 cbvreu
 |-  ( E! x e. A ph <-> E! y e. A ps )
6 4 5 imbi12i
 |-  ( ( E. x e. A ph -> E! x e. A ph ) <-> ( E. y e. A ps -> E! y e. A ps ) )
7 rmo5
 |-  ( E* x e. A ph <-> ( E. x e. A ph -> E! x e. A ph ) )
8 rmo5
 |-  ( E* y e. A ps <-> ( E. y e. A ps -> E! y e. A ps ) )
9 6 7 8 3bitr4i
 |-  ( E* x e. A ph <-> E* y e. A ps )